The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation.
نویسندگان
چکیده
Reactive aldehydes derived from reducing sugars and peroxidation of lipids covalently modify proteins and may contribute to oxidative tissue damage. We recently described another mechanism for generating reactive aldehydes from free alpha-amino acids. The pathway begins with myeloperoxidase, a heme enzyme secreted by activated neutrophils. Conversion of alpha-amino acids to aldehydes requires hypochlorous acid (HOCl), formed from H2O2 and chloride by myeloperoxidase. When L-serine is the substrate, HOCl generates high yields of glycolaldehyde. We now demonstrate that a model protein, ribonuclease A (RNase A), exposed to free L-serine and HOCl exhibits the biochemical hallmarks of advanced glycation end (AGE) products -- browning, increased fluorescence, and cross-linking. Furthermore, Nepsilon-(carboxymethyl)lysine (CML), a chemically well-characterized AGE product, was generated on RNase A when it was exposed to reagent HOCl-serine, the myeloperoxidase-H2O2-chloride system plus L-serine, or activated human neutrophils plus L-serine. CML production by neutrophils was inhibited by the H2O2 scavenger catalase and the heme poison azide, implicating myeloperoxidase in the cell-mediated reaction. CML was also generated on RNase A by a myeloperoxidase-dependent pathway when neutrophils were activated in a mixture of amino acids. Under these conditions, we observed both L-serine-dependent and L-serine-independent pathways of CML formation. The in vivo production of glycolaldehyde and other reactive aldehydes by myeloperoxidase may thus play an important pathogenic role by generating AGE products and damaging tissues at sites of inflammation.
منابع مشابه
Advanced glycation end products are associated with pulse pressure in type 1 diabetes: the EURODIAB Prospective Complications Study.
We investigated the associations of pulse pressure (a measure of arterial stiffness) with the early glycation products hemoglobin A1c (HbA1c) and Amadori albumin and the advanced glycation end products pentosidine, Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine in a large group of type 1 diabetic individuals of the EURODIAB Prospective Complications Study. We did a cross-secti...
متن کاملN-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins.
Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)ly...
متن کاملAdvanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses.
BACKGROUND The products of nonenzymatic glycation and oxidation of proteins, the advanced glycation end products (AGEs), form under diverse circumstances such as aging, diabetes, and kidney failure. Recent studies suggested that AGEs may form in inflamed foci, driven by oxidation or the myeloperoxidase pathway. A principal means by which AGEs alter cellular properties is through interaction wit...
متن کاملThe advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions.
Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in...
متن کاملGlycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes.
OBJECTIVE To assess the relative importance of fasting and postprandial hyperglycemia to vascular dysfunction in diabetes, we have measured indicators of glycation, oxidative and nitrosative stress in subjects with type 1 diabetes, and different postprandial glucose patterns. RESEARCH DESIGN AND METHODS Plasma and urinary levels of specific arginine- and lysine-derived advanced glycation end ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 104 1 شماره
صفحات -
تاریخ انتشار 1999